Advertisement
Canada markets closed
  • S&P/TSX

    21,899.99
    -210.11 (-0.95%)
     
  • S&P 500

    5,123.41
    -75.65 (-1.46%)
     
  • DOW

    37,983.24
    -475.86 (-1.24%)
     
  • CAD/USD

    0.7270
    +0.0008 (+0.11%)
     
  • CRUDE OIL

    85.56
    -0.10 (-0.12%)
     
  • Bitcoin CAD

    90,135.96
    +1,290.66 (+1.45%)
     
  • CMC Crypto 200

    885.54
    0.00 (0.00%)
     
  • GOLD FUTURES

    2,375.20
    +1.10 (+0.05%)
     
  • RUSSELL 2000

    2,003.17
    -39.43 (-1.93%)
     
  • 10-Yr Bond

    4.4990
    -0.0770 (-1.68%)
     
  • NASDAQ futures

    18,235.00
    +55.75 (+0.31%)
     
  • VOLATILITY

    17.31
    +2.40 (+16.10%)
     
  • FTSE

    7,995.58
    +71.78 (+0.91%)
     
  • NIKKEI 225

    39,523.55
    +80.95 (+0.21%)
     
  • CAD/EUR

    0.6823
    +0.0004 (+0.06%)
     

ALPHAMIN ANNOUNCES AN UPDATED MPAMA SOUTH MINERAL RESOURCE ESTIMATE AND THE DECISION TO COMMENCE WITH DEVELOPMENT

Alphamin Resources Corp.
Alphamin Resources Corp.

GRAND BAIE, Mauritius, March 29, 2022 (GLOBE NEWSWIRE) -- Alphamin Resources Corp. (AFM:TSXV, APH:JSE AltX, “Alphamin” or the “Company”), a producer of 4% of the world’s mined tin1 from its high-grade operation in the Democratic Republic of Congo, is pleased to announce an updated Mpama South Mineral Resource estimate and the decision to commence with the development of the Mpama South mine and processing plant.

HIGHLIGHTS

  • Mpama South updated Inferred Resource up 75% to 3.42Mt based on assays from 22 additional drillholes. Mpama South Mineral Resource now stands at:

    • 0.85Mt @ 2.55% Sn for 21.5kt contained tin in the Indicated category; and

    • 3.42Mt @ 2.45% Sn for 83.7kt contained tin in the Inferred category

ADVERTISEMENT
  • Significant additional resource growth potential at Mpama South - drilling is on-going with considerable mineralisation intercepted beyond the updated Mineral Resource boundary

  • Decision to commence with the development of Mpama South:-

    • Targeted first tin production by December 2023

    • Estimated annual contained tin production of 7,232 tonnes3 at an estimated AISC2 of US$15,188/t tin (Based on an assumed US$40,000/t tin price)

    • Estimated annual EBITDA2 of US$187m3 at an assumed tin price of US$40,000/t

    • Estimated capital development cost of US$116m3 providing a projected short payback in relation to annual EBITDA potential

    • De-risked project execution with similar mining method, mining fleet and processing route as currently applied at Alphamin’s adjacent Mpama North Mine

    • Capital development cost to be funded from cash reserves

  • Mpama South’s development is expected to increase annual contained tin production from the current 12,000tpa to ~20,000tpa, approximating 6.6% of the world’s mined tin1

Chief Executive Officer, Maritz Smith comments:

“The development of Mpama South as a brownfields expansion is expected to increase Alphamin’s annual tin production by 65% to a targeted 20,000t from FY2024. Tin and technology are inter-linked and consequently global demand for tin continues to increase despite constrained supply. This development decision and the resultant additional production expected by the end of 2023, positions us to deliver more tin into this widening market deficit.”

Mpama South Updated Mineral Resource Estimate

The updated Mineral Resource for Mpama South follows three weeks after the announcement of the maiden Mineral Resource in the Company’s announcement of 7th March 2022. The update is based on the receipt of assays for a further 22 drillholes to the original 79 drillholes on which the Maiden Mineral Resource estimate was based.

The updated Mineral Resource presented in Figure 1 closely follows the spatial position of reported assays which Alphamin presented in its 22nd March 2022 Company announcement. This practice of regularly plotting intercepted visual cassiterite and assays in news announcements, as an early indication of where Mineral Resources may potentially extend to and then following it up with regular Mineral Resource updates, is planned to continue during 2022.

Figure 1: Updated Mpama South Mineral Resource and visual cassiterite intercepts awaiting assay



Source: Alphamin 2022

Following the receipt of assays for the additional 22 drillholes, an updated Mineral Resource Estimate (MRE) for the Mpama South project was completed. The MRE, which now includes results from 102 drillholes, was estimated using the Canadian Institute of Mining, Metallurgy and Petroleum (CIM) Best Practice Guidelines (2019) and is reported in accordance with the 2014 CIM Definition Standards.

The Mineral Resource is classified into the Indicated and Inferred categories and is reported at a base case tin grade of 1.0%, which satisfies reasonable prospects for economic extraction. Mpama South Inferred Resources increased by 75% to 3.42Mt. The Mineral Resource Statement with an effective date of 28 March 2022 is presented in Table 1:-

Table 1: Updated Mpama South Mineral Resources effective 28 March 2022

Classification

Tonnes (millions)

Sn %

Sn Tonnes
(thousands)

Indicated4

0.85

2.55

21.5

Inferred5

3.42

2.45

83.7

Mineral Resources that are not Mineral Reserves do not have a demonstrated economic viability and require advanced studies and economic analysis to prove their viability for extraction.

The MRE for Mpama South does not include a substantial quantity of subsequent drilling containing characteristic high grade visual cassiterite. Around 30 additional drillholes and over ~10,000 metres beyond and within the limits of the updated MRE at Mpama South have been completed. Subsequent Mpama South MRE updates are expected to be released throughout the remainder of the drilling phases in 2022 and beyond as assays are received.

The MRE has been completed by Mr. J.C. Witley (BSc Hons, MSc (Eng.)) who is a geologist with 33 years’ experience in base and precious metals exploration and mining as well as Mineral Resource evaluation and reporting. He is a Principal Resource Consultant for The MSA Group (an independent consulting company), is registered with the South African Council for Natural Scientific Professions (SACNASP) and is a Fellow of the Geological Society of South Africa (GSSA). Mr. Witley has the appropriate relevant qualifications and experience to be considered a “Qualified Person” for the style and type of mineralisation and activity being undertaken as defined in National Instrument 43-101 Standards of Disclosure of Mineral Projects.

Preliminary Economic Assessment (PEA) Results on Mpama South

Summary results from the PEA announced on 7 March 2022 are tabulated below. The PEA was based on the maiden Resource estimate and excludes Resources from the updated MRE included in this announcement.

Description

Unit

Value

Avg. Annualised ROM mined and processed

‘000t

468

Avg. Annualised ROM grade

%Sn

2.21

Processing recovery

%

70.0

Avg. Annualised Contained tin produced

tonnes

7,232

Avg. Annualised AISC per tonne contained tin sold (At US$40,000/t tin price)

$/t tin

15,188

Avg. Annualised AISC per tonne contained tin sold (At US$30,000/t tin price)

$/t tin

14,326

Avg. Annualised EBITDA (At US$40,000/t tin price)

US$’000

187,310

Avg. Annualised EBITDA (At US$30,000/t tin price)

US$’000

121,220

Development Capital Estimate

US$’000

115,970

* The outputs are based on 100% of the project. Alphamin indirectly owns 84,14% of the project.

The PEA is preliminary in nature, it includes Inferred Mineral Resources that are considered too speculative geologically to have economic considerations applied to them that would enable them to be categorized as Mineral Reserves. There is no certainty that the PEA results will be realized. Mineral Resources are not Mineral Reserves and do not have demonstrated economic viability, nor is there certainty that the Mineral Resource will be converted into Mineral Reserves.

Decision to commence with the development of Mpama South

PEA studies are conceptual in nature and are most commonly applied to projects at an early stage of exploration to conceptualise potential viability. A PEA is not a pre-feasibility or feasibility study and the Company does not purport the PEA results to be equivalent to a feasibility study. However, notwithstanding the very preliminary and conceptual nature of the PEA, based on the Company’s experience at Mpama North and knowledge base, including regarding underground conditions, the mining method and processing route, and the proximity and very similar characteristics of the deposits, the Company believes that Mpama South represents an immediately accessible adjacent Resource to the current producing Mpama North mine.

The Board has approved the commencement of development of Mpama South without delay taking account of:

  • the opportunity to take advantage of the current and forecasted supply deficit in the tin market;

  • the Company’s ability to self-fund its development from current and short-term forecasted cash reserves;

  • the continued exploration success at Mpama South which has immediate potential for further resource extensions and successful conversion of inferred resources;

  • the expected short payback on this capital investment;

  • the potential significant value any additional production has to the operating profits of the Company in the near term.

The lead time to project completion and commissioning is estimated at 20 months with first tin production targeted by December 2023. The surface infrastructure and processing plant construction will be executed under an EPCM contract model, using contractors who are familiar with the Mpama North mine, and who have proven their competence at the mine to date. The underground mine development will be executed by a dedicated Alphamin mining team who will progress from developing the project to planned production mining.

Qualified Persons

Mr Jeremy Witley, Pr. Sci. Nat., B.Sc. (Hons.) Mining Geology, M.Sc. (Eng.), is a qualified person (QP) as defined in National Instrument 43-101 and has reviewed and approved the scientific and technical information relating to Mineral Resources contained in this news release. He is a Principal Mineral Resource Consultant of The MSA Group (Pty.) Ltd., an independent technical consultant to the Company.

Mr. Clive Brown, Pr. Eng., B.Sc. Engineering (Mining), is a qualified person (QP) as defined in National Instrument 43-101 and has reviewed and approved all scientific and technical information other than relating to the mineral resources contained in this news release. He is a Principal Consultant and Director of Bara Consulting Pty Limited, an independent technical consultant to the Company.

____________________________________________________________________________

FOR MORE INFORMATION, PLEASE CONTACT:

Maritz Smith
CEO
Alphamin Resources Corp.
Tel: +230 269 4166
E-mail: msmith@alphaminresources.com
____________________________________________________________________________

CAUTION REGARDING FORWARD LOOKING STATEMENTS

Information in this news release that is not a statement of historical fact constitutes forward-looking information. Forward-looking statements contained herein include, without limitation, statements relating to the results of the Mpama South PEA, including estimated development costs, estimated quantities of materials to be mined and processed, estimated grades, metallurgical recoveries and quantities of tin to be produced, and estimated costs of production and EBITDA, estimated time for mine construction, the merit and potential viability of the project, estimated Mineral Resources for Mpama South, development of a mine at Mpama South and anticipated exploration activities and outcomes. Forward-looking statements are based on assumptions management believes to be reasonable at the time such statements are made. There can be no assurance that such statements will prove to be accurate, as actual results and future events could differ materially from those anticipated in such statements. Accordingly, readers should not place undue reliance on forward-looking statements. Although Alphamin has attempted to identify important factors that could cause actual results to differ materially from those contained in forward-looking statements, there may be other factors that cause results not to be as anticipated, estimated or intended. Factors that may cause actual results to differ materially from expected results described in forward-looking statements include, but are not limited to: uncertainties inherent in estimates of Mineral Resources, mine development and operating costs, mining volumes, grades and processing recoveries, particularly in light of the very early stage at which some of these estimates are being made, global economic uncertainties, volatility of metal prices, uncertainties with respect to social, community and environmental impacts, uninterrupted access to required infrastructure, adverse political geopolitical events, impacts of the global Covid-19 pandemic on mining, global supply chain issues which may cause longer lead-times to procure critical equipment and consumables which may delay project implementation as well as those risk factors set out in the Company’s Management Discussion and Analysis and other disclosure documents available under the Company’s profile at www.sedar.com. Forward-looking statements contained herein are made as of the date of this news release and Alphamin disclaims any obligation to update any forward-looking statements, whether as a result of new information, future events or results or otherwise, except as required by applicable securities laws.

USE OF NON-IFRS FINANCIAL PERFORMANCE MEASURES

This announcement refers to the following non-IFRS financial performance measures:

EBITDA

EBITDA is profit before net finance expense, income taxes and depreciation, depletion, and amortization. This measure assists readers in understanding the cash generating potential of the project including liquidity to fund working capital, pay taxes, service debt, and funding capital expenditures and investment opportunities.

This measure is not recognized under IFRS as it does not have any standardized meaning prescribed by IFRS and is therefore unlikely to be comparable to similar measures presented by other issuers. EBITDA data is intended to provide additional information and should not be considered in isolation or as a substitute for measures of performance prepared in accordance with IFRS.

AISC

This measures the costs to produce a tonne of contained tin plus the capital sustaining costs to maintain the mine, processing plant and infrastructure. AISC includes mine operating production expenses such as mining, processing, administration, indirect charges (including surface maintenance and camp and tailings dam construction costs), smelting costs and deductions, refining and freight, distribution, royalties and product marketing fees. AISC does not include depreciation, depletion, and amortization, reclamation expenses, borrowing costs and exploration expenses. Contractual product marketing fees terminate in August 2024, following which date zero marketing fees have been included in estimated AISC and EBITDA.

Sustaining capital expenditures are defined as those expenditures which do not increase contained tin production at a mine site and excludes all expenditures at the Company’s projects and certain expenditures at the Company’s operating sites which are deemed expansionary in nature.

Risks relating to Mineral Resource Estimates

The figures for Mineral Resources contained in this news release are estimates only and no assurance can be given that the anticipated tonnages and grades will be achieved, that the indicated level of recovery will be realized or that the Mineral Resources could be mined or processed profitably. There are numerous uncertainties inherent in estimating Mineral Resources, including many factors beyond the Company’s control. Such estimation is a subjective process, and the accuracy of any resource estimate is a function of the quantity and quality of available data and of the assumptions made and judgments used in engineering and geological interpretation. Short-term operating factors relating to the Mineral Resources, such as the need for orderly development of the ore bodies or the processing of new or different ore grades, may cause the mining operation to be unprofitable in any particular accounting period. In addition, there can be no assurance that metal recoveries in small scale laboratory tests will be duplicated in larger scale tests under on-site conditions or during production. Lower market prices, increased production costs, the presence of deleterious elements, reduced recovery rates and other factors may result in revision of its resource estimates from time to time or may render the Company’s resources uneconomic to exploit. Resource data is not indicative of future results of operations. If the Company’s actual Mineral Resources are less than current estimates or if the Company fails to develop its resource base through the realization of identified mineralized potential, its results of operations or financial condition may be materially and adversely affected.

Neither the TSX Venture Exchange nor its regulation services provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this news release.

Appendix 1: SAMPLE PREPARATION, ANALYSES AND QUALITY CONTROL AND QUALITY ASSURANCE (QAQC)

After receipt of diamond drill core from the drillers at the drill rig in marked core trays, core was transported to the Company’s core shed by the site geologist for logging and sampling. After sample mark up, lithological and geotechnical logging and photography, the core was split longitudinally in half using a water-cooled rotating diamond blade core saw. The cut core was replaced into the core tray with the half to be sampled facing upward. The Archimedes method of weight in air vs weight in water was used to provide relative density measurements on the whole length of the half core that was to be sampled and then replaced in the core trays.

Air dried samples were placed in pre-numbered sample bags together with pre-printed numbered sample tickets, which were cross-checked afterwards to prevent sample swaps. Sample bags were sealed using a plastic cable tie and then placed into poly-weave sacks which were in turn sealed with plastic cable ties. Each poly-weave sack was marked with a number and the sample numbers contained within, ready for delivery to the on-site Alphamin-Bisie laboratory (managed by Anchem) for sample preparation.

At the laboratory, samples were first checked off against the submission list supplied and then weighed and oven dried for 2 hours at 105 degrees Celsius. The dried samples were crushed by jaw crusher to 75% passing 2mm, from which a 250g riffle split was taken. This 250g split was pulverised in ring mills to 90% passing 75μm from which a sample for analysis was taken. Samples were homogenised using a corner-to-corner methodology and two samples were taken from each pulp, one of 10g for on-site laboratory preliminary assaying and another 150g sample for export and independent accredited 3rd party laboratory assaying.

For the initial on-site laboratory assay, 10 grams of pulverised sample is mixed with 2 grams of binder before press pellet preparation at 20t/psi for 1 minute. Press pellets are analysed in a desktop Spectro Xepos XRF analyser, twelve at a time, for Sn, Fe, Zn, Cu, Ag, Pb and As along with a standard, duplicate and blank. The analytical method conducted on the pressed pellet has an expected 10% precision and an upper detection limit of 70,000ppm and lower detection limit of 500ppm. Over-limit samples are titrated by wet chemistry with an upper limit validation of 70% Sn. The on-site laboratory assays are merely an exploration tool and were not used for reporting the exploration results or Mineral Resource estimation, which are based solely on the ALS assays.

The 150g sample is packaged in sealed paper sample envelopes and packed in a box for export in batches of approximately 500 samples and prepared for export authorisation with national authorities. Once authorisation is received, samples are air-couriered to ALS Global in Johannesburg South Africa, a subsidiary of ALS Limited, which is an independent commercial analytical facility. ALS operations are ISO 9001:2015 certificated and the Johannesburg office is ISO 17025 accredited for Chemical Analysis by SANAS (South African National Accreditation System, facility number T087), although the accreditation does not extend to the methods used for tin.

Received samples at ALS Johannesburg are checked off against the list of samples supplied and logged in the system. Quality Control is performed in the way of sieve tests every 50 samples and should a sample fail, the preceding 50 samples are ground in a ring mill pulveriser using a carbon steel ring set to 85 % passing 75μm. Samples are analysed for tin using method code ME-XRF05 conducted on a pressed pellet with 10% precision and an upper limit of 5,000ppm. The over-limit tin samples are analysed as fused disks according to method ME-XRF15c, which makes use of pre-oxidation and decomposition by fusion with 12:22 lithium borate flux containing 20% Sodium Nitrate as an oxidizing agent, with an upper detection limit of 79% Sn.

Method code ME-ICP61 (HF, HNO3, HClO4 and HCl leach with ICP-AES finish) is used for 33 elements including base metals. ME-OG62, a four-acid digestion, is used on ore grade samples for lead, zinc, copper and silver. Both methods are accredited by SANAS.

The program is designed to include a comprehensive analytical quality assurance and control routine comprising the systematic use of Company inserted standards, blanks and field duplicate samples, internal laboratory standards and analysis at an accredited laboratory. The pulps were accompanied by blind QAQC samples inserted into the sample stream by the Alphamin-Bisie geologists. These comprised blank samples, certified reference materials and pulp duplicates each at an insertion rate of approximately 5%.

The QAQC results demonstrate that the assay results are both accurate and precise with an insignificant amount of contamination (in the order of 10pmm Sn on average) and negligible sampling errors.

Laboratory verification work was conducted by check assays conducted at SGS South Africa (Pty) Ltd. This included 105 check samples submitted in November 2021. These samples comprised duplicated pulps from the maiden resource drillholes derived from the sample preparation at the on-site laboratory. CRMs and blanks to an appropriate level also formed part of the 105-sample submission. Check assay results showed that there was a near zero overall bias and that inter-lab precision, after removal of <0.10% Sn samples,was ~85% within 10% error and ~95% within 20% error. Given the nature of high-grade tin variability and previous knowledge of umpire check exercises at the operation, these results are considered acceptable.

Appendix 2: SIGNIFICANT INTERCEPTS (0.5% Sn lower threshold)

Mpama South Drillholes prefixed “BGH”

Mpama North Drillholes prefixed “MND”

Hole

Easting

Northing

RLm

Azi (°)

Dip (°)

From

To

Sn %

Width

Sample Position

GPS

GPS

(m)1

mid_x

mid_y

mid_z

BGH017

582535

9884822

732

55

-10

237.8

238.8

4.99

1

582,732

9,884,966

678.6

BGH018

582535

9884822

732

93

0

141.2

144.35

2.07

3.15

582,691

9,884,820

727.9

145.75

151

0.76

5.25

582,696

9,884,820

727.9

BGH019

582535

9884822

732

85

-5

147

152

2.05

5

582,696

9,884,837

715.8

BGH020

582535

9884822

732

84

-15

160.6

164.4

1.45

3.8

582,704

9,884,846

689.3

169.3

171.1

5.42

1.8

582,711

9,884,846

687.7

BGH021

582535

9884822

732

93

-15

109.15

110.25

3.2

1.1

582,654

9,884,821

700.1

164.6

167.32

3.29

2.72

582,708

9,884,818

687.6

BGH022



582554



9884785



732



90



0



75

80.53

3.99

5.53

582,633

9,884,784

729.3

109

110

1.35

1

582,664

9,884,785

729.9

119.22

122.1

2.22

2.88

582,676

9,884,785

730.1

BGH023

582535

9884822

732

75

-15

171.43

174.32

1.72

2.89

582,710

9,884,859

683.7

175.85

178

1.09

2.15

582,714

9,884,860

683

BGH024

582554

9884785

732

103

-5

127.7

129.6

0.54

1.9

582,679

9,884,749

717.2

137.95

142

1.13

4.05

582,690

9,884,746

716.2

BGH025





582535





9884822





732





55





-20





212.25

213.4

0.6

1.15

582,724

9,884,919

662.3

218

221.45

2.29

3.45

582,731

9,884,921

660.7

222.7

223.7

13.05

1

582,734

9,884,923

659.9

228

234.8

2.73

6.8

582,741

9,884,926

658

BGH026



582554



9884785



732



113



-10



103.71

108

3.3

4.29

582,649

9,884,735

713.7

134.8

136.45

3.72

1.65

582,676

9,884,722

708.6

161

162.5

5.61

1.5

582,699

9,884,711

704.5

BGH030





582554





9884785





732





115





-20





110

111.4

7.24

1.4

582,655

9,884,753

692.2

141.9

152.5

4.85

10.6

582,686

9,884,745

680

158

161.2

3.61

3.2

582,699

9,884,742

675.3

174.45

175.8

11.03

1.35

582,713

9,884,738

670.5

BGH032







582554







9884785







732







125







-20







177

178.72

1.7

1.72

582,692

9,884,684

671.3

182

188.25

3

6.25

582,697

9,884,679

669.1

190.25

193

0.95

2.75

582,702

9,884,676

667.2

194.4

202

1.37

7.6

582,707

9,884,672

665.3

203.5

208

2.67

4.5

582,713

9,884,668

663.2

BGH034









582554









9884785









732









115









-25









174.8

178

11.99

3.2

582,689

9,884,696

653.3

195.7

200

1.21

4.3

582,706

9,884,686

644.8

202.37

206.65

1.86

4.28

582,711

9,884,683

642.3

208

213.3

1.4

5.3

582,716

9,884,680

640.1

216.25

221.3

1.42

5.05

582,722

9,884,676

637.3

225.65

231

0.7

5.35

582,730

9,884,671

634

BGH027



582544



9884822



732



68



-27



212.35

214

0.58

1.65

582,729

9,884,879

634

226

229.3

1.32

3.3

582,741

9,884,883

628.4

235.45

236.58

1.54

1.13

582,749

9,884,885

625.2

BGH028





582554





9884785





732





90





-10





125

126

1.72

1

582,676

9,884,772

700.9

136.1

137.18

1.85

1.08

582,687

9,884,770

698.4

140.28

142

1.03

1.72

582,691

9,884,770

697.4

147.46

151.25

2.88

3.79

582,699

9,884,769

695.5

BGH029



582544



9884822



732



93



-25



126

128.35

4.66

2.35

582,663

9,884,826

678.5

178.9

184.05

1.25

5.15

582,713

9,884,827

657.7

193.7

196.05

3.95

2.35

582,726

9,884,827

653

BGH031

582544

9884822

732

75

-25

208

211.53

0.99

3.53

582,729

9,884,876

639.9

219.4

222.38

1.16

2.98

582,739

9,884,879

636

BGH033

582544

9884822

732

60

-27

259

265.46

7.32

6.46

582,756

9,884,929

612.8

268.53

270.52

1.02

1.99

582,762

9,884,931

610

BGH035



582554



9884785



732



90



-25



152

165

2.96

13

582,686

9,884,816

665

171

173.6

1.47

2.6

582,703

9,884,815

657.4

176.6

180.08

2.4

3.48

582,709

9,884,814

654.9

BGH036

582544

9884822

732

65

0

147.45

151.35

2.31

3.9

582,687

9,884,878

724.8

156.63

160.65

0.93

4.02

582,696

9,884,881

724.7

BGH037







582554







9884785







732







105







-30







154

157

3.81

3

582,680

9,884,741

647.5

194.6

197.55

1.54

2.95

582,712

9,884,730

626

207.95

211.18

1.29

3.23

582,723

9,884,726

619.3

216.25

220.15

2.79

3.9

582,730

9,884,723

615.1

222.4

226.7

1.77

4.3

582,735

9,884,721

612.1

BGH038



582544



9884822



732



75



-30



151.7

154.6

5.22

2.9

582,677

9,884,851

654.3

218.3

223.65

3.38

5.35

582,735

9,884,861

621.4

226.7

231.5

1.95

4.8

582,743

9,884,862

617.6

BGH039





582554





9884785





732





100





-22





112.08

113

2.12

0.92

582665.1

9,884,755

687.6

116.3

120.95

3.33

4.65

582,661

9,884,753

686.1

145

166

2.2

21

582,696

9,884,744

674.2

174.5

176

0.95

1.5

582,713

9,884,739

668.9

BGH040

582544

9884822

732

60

-30

232

233

0.95

1

582,725

9,884,922

618.2

273.7

277.05

3.79

3.35

582,761

9,884,937

600

BGH041

582500

9884847

732

55

-25

340

344.5

3.03

4.5

582,807

9,885,002

599.5

BGH042



582544



9884822



732



60



-35



277.35

280

1.93

2.65

582,751

9,884,922

569.4

308.5

312

0.62

3.5

582,776

9,884,932

552.6

313

315.55

1.52

2.55

582,779

9,884,933

550.5

BGH043



582544



9884822



732



100



-10



102.5

104.15

2.69

1.65

582,644

9,884,808

709

123

124

1.06

1

582,663

9,884,805

704.8

163.64

167

2.82

3.36

582,704

9,884,798

696.7

BGH044

582500

9884847

710

70

-35

330

334.13

1.31

4.13

582,764

9,884,941

533.4

BGH045



582544



9884822



732



100



-20



120.65

121.75

31.55

1.1

582,656

9,884,806

687.4

156

159.4

0.56

3.4

582,689

9,884,799

674.7

176.7

183.62

3.24

6.92

582,708

9,884,795

668.1

BGH046





582544





9884822





732





100





-30





195.18

206

2.85

10.82

582,712

9,884,795

630.5

212.53

215.18

1.9

2.65

582,723

9,884,793

623.7

218

220.6

7.16

2.6

582,728

9,884,792

620.8

225

226

4.36

1

582,733

9,884,791

617.7

BGH047

582565

9884535

718

60

0

121.58

124.57

0.91

2.99

582,653

9,884,879

739.2

147.09

148.09

1.28

1

582,675

9,884,889

741.1

BGH048

582567

9884509

727

90

0

140.75

143.05

0.9

2.3

582,708

9,884,496

727.7

146.53

148

0.74

1.47

582,713

9,884,495

728

BGH049

582565

9884535

718

65

-15

145.4

147.4

4.27

2

582,689

9,884,599

674.5

BGH050

582567

9884509

727

105

-5

160

161.38

1.06

1.38

582,722

9,884,469

711.7

BGH051





582565





9884535





718





40





0





134.8

137

2.23

2.2

582,662

9,884,630

712.3

151

156.3

1.2

5.3

582,675

9,884,642

711.4

164.18

169.45

3.95

5.27

582,685

9,884,651

710.8

171.27

172.57

4.08

1.3

582,688

9,884,655

710.6

BGH052

582567

9884509

727

120

0

205.9

207.1

1.86

1.2

582,732

9,884,385

722.9

BGH053









582565









9884535









718









40









-15









173.73

176.93

9.58

3.2

582,685

9,884,653

669.2

178.55

181.43

4.07

2.88

582,688

9,884,656

667.9

192.41

196.86

3.28

4.45

582,698

9,884,666

664

198.86

206.77

2.45

7.91

582,704

9,884,671

661.8

207.53

209.5

5.04

1.97

582,708

9,884,675

660.3

214.65

216

2.32

1.35

582,713

9,884,680

658.6

BGH054

No significant intercepts

BGH055

582565

9884535

718

80

-15

145

146

0.62

1

582,705

9,884,549

682.7

BGH056

No significant intercepts

BGH057

No significant intercepts

BGH058

582565

9884510

727

95

-5

153.35

155.6

1.98

2.25

582,717.30

9,884,501.20

703.9

BGH059

582567

9884536

718

95

0

165

166

3.63

1

582,732.30

9,884,528.30

714.4

BGH060

No significant intercepts

BGH061

582567

9884536

727

130

-10

157.57

159.19

1.22

1.62

582,719

9,884,525

677.7

BGH062

582567

9884537

718

95

-15

154

156

2.18

2

582,695

9,884,589

650.2

BGH063









582782









9884646









829









270









-70









186.25

194.37

0.82

8.12

582,719

9,884,661

650.5

197.42

202.45

1.12

5.03

582,715

9,884,661

641.8

205

209.05

0.83

4.05

582,712

9,884,661

635.4

211.13

218.9

2.06

7.77

582,709

9,884,661

628.3

220.4

222.55

0.86

2.15

582,706

9,884,661

622.5

231

233

0.87

2

582,701

9,884,661

613

BGH064

582888

9884976

839

270

-50

220.8

222.6

0.63

1.8

582,746

9,884,976

668.9

BGH065

582913

9885057

819

270

-60

271

275.95

2.93

4.95

582,769

9,885,057

586.1

291.56

292.56

1.7

1

582,759

9,885,057

570.9

BGH066

582888

9884976

839

270

-60

276

278.59

8.49

2.59

582,754

9,884,965

596.1

300

301

1.78

1

582,742

9,884,965

576.6

BGH067



582913



9885057



819



270



-67



295.75

300.47

3.21

4.72

582,789

9,885,065

548.1

303

304.62

1.56

1.62

582,786

9,885,065

543.1

337

338

0.55

1

582,769

9,885,068

514.3

BGH068

582913

9885057

819

270

-50

247

248.2

2.1

1.2

582,749

9,885,051

633.1

251.8

255.1

1.75

3.3

582,745

9,885,051

628.8

BGH069

582888

9884976

839

270

-70

321.8

324.73

3.84

2.93

582,779

9,884,962

534.7

BGH070

582913

9885057

819

270

-73

331

336.35

3

5.35

582,802

9,885,040

505.2

BGH071

No significant intercepts

BGH072

582852

9884845

831

270

-67

274.6

279.7

2.7

5.1

582,749

9,884,847

574

290.4

294.8

3.61

4.4

582,742

9,884,847

560

BGH073

582731

9884691

838

280

-60

121

123

0.72

2

582,671

9,884,702

731.9

BGH074





582944





9885130





798





270





-67





278.9

283.93

2.85

5.03

582,810

9,885,137

551.2

285.49

289.1

1.6

3.61

582,807

9,885,138

546.3

294.51

297.3

7.14

2.79

582,802

9,885,139

539.1

299.65

303.34

0.53

3.69

582,799

9,885,139

534.5

BGH075





582731





9884691





838





270





-70





115.4

116.65

6.76

1.25

582,690

9,884,690

729.4

119.5

120.8

15.22

1.3

582,688

9,884,690

725.7

125.09

129.8

3.56

4.71

582,684

9,884,690

719.3

162.55

164.63

8.94

2.08

582,667

9,884,689

687.8

BGH076





582752





9884801





849





300





-40





108

109

0.84

1

582,682

9,884,844

779.6

118.8

119.45

3.71

0.65

582,675

9,884,848

772.7

128.15

131

2.82

2.85

582,668

9,884,852

765.8

136.7

137

0.97

0.3

582,663

9,884,855

761

BGH077







582944







9885130







798







270







-72







316.84

321.2

2.57

4.36

582,830

9,885,130

501.7

323

328.36

2.56

5.36

582,827

9,885,130

495.8

329.06

330.13

0.52

1.07

582,825

9,885,130

492.4

335.25

337.36

9.63

2.11

582,822

9,885,130

486.5

339.77

340.07

7.07

0.3

582,820

9,885,131

483.4

BGH078



582752



9884801



849



280



-40



102

106

1.88

4

582,674

9,884,816

782.6

108

109

0.62

1

582,671

9,884,817

779.7

115

117.15

0.8

2.15

582,665

9,884,818

774.8

BGH079













582852













9884845













831













270













-73













290.15

294.4

1

4.25

582,765

9,884,842

552.6

296.3

302.3

9.46

6

582,763

9,884,841

546.1

304.81

305.7

18.75

0.89

582,761

9,884,841

540.5

312

313

1.08

1

582,758

9,884,841

533.8

316.9

321.63

4.65

4.73

582,755

9,884,840

527.5

322.57

328

5.41

5.43

582,753

9,884,840

522

328.95

329.48

1.59

0.53

582,751

9,884,840

518.4

340.68

341.42

4.29

0.74

582,747

9,884,839

507.6

BGH080



582944



9885130



798



270



-75



339.9

343.6

1.05

3.7

582,853

9,885,141

469.2

345

346.55

4.11

1.55

582,851

9,885,141

465.5

360.7

361

11.95

0.3

582,846

9,885,143

451.5

BGH081a

583022

9885299

776

270

-50

269

274.56

1.99

5.56

582,838

9,885,306

578.6

275.56

275.86

0.64

0.3

582,835

9,885,307

576

BGH082a



583013



9885209



752



270



-50



263.83

266.3

3.43

2.47

582,836

9,885,222

556

268.35

269.15

3.32

0.8

582,833

9,885,223

553.5

276.97

277.27

15.65

0.3

582,827

9,885,224

547.9

BGH083

No significant intercepts

BGH084

583023

9885299

776

270

-57

278.95

280.9

6.25

1.95

582,857

9,885,307

552.8

283.06

286.31

1.28

3.25

582,854

9,885,307

549.2

BGH085

583023

9885299

776

270

-65

294.65

298.35

0.83

3.7

582,890

9,885,304

512.9

BGH086

583013

9885208

752

270

-57

275.35

280.78

3.07

5.43

582,847

9,885,214

530.1

286.05

286.51

18.9

0.46

582,841

9,885,215

524.4

BGH087

583023

9885299

777

270

-75

263.75

264.28

0.59

0.53

582,946

9,885,305

525.0

BGH088



















583012



















9885208



















752



















270



















-67



















297.74

299.46

11.93

1.72

582,876

9,885,221

487.3

301

301.77

6.79

0.77

582,875

9,885,221

485.0

303.7

304

2.47

0.3

582,873

9,885,222

483.0

305.7

306

1.66

0.3

582,872

9,885,222

481.4

307.2

307.55

6.66

0.35

582,871

9,885,223

480.2

308.26

308.93

12.15

0.67

582,871

9,885,223

479.2

309.46

309.77

1.98

0.31

582,870

9,885,223

478.3

310.35

310.68

17.65

0.33

582,869

9,885,223

477.6

313

313.85

2.82

0.85

582,868

9,885,224

475.3

324.48

324.86

5.77

0.38

582,861

9,885,226

466.3

325.43

325.83

10.40

0.4

582,861

9,885,226

465.6

BGH089





582951





9885352





779





270





-50





198

199

4.58

1

582,822

9,885,357

628.9

202.65

203.45

12.25

0.8

582,819

9,885,357

625.5

205.1

205.54

7.96

0.44

582,818

9,885,357

623.7

217.45

218.45

31.90

1

582,809

9,885,358

614.1

BGH090



582951



9885423



769



270



-50



168.8

170.48

2.45

1.68

582,843

9,885,424

638.3

170.88

171.48

12.55

0.6

582,842

9,885,424

637.1

172.97

173.3

5.05

0.33

582,841

9,885,424

635.6

BGH091

582951

9885352

779

270

-65

222.1

223.5

4.02

1.4

582,850

9,885,358

581.3

BGH092

583021

9885430

752

270

-55

193.5

193.88

17.15

0.38

582,913

9,885,431

591.9

BGH093



583013



9885345



759



270



-70



224.25

224.75

4.06

0.5

582,932

9,885,341

549.9

225.8

226.72

1.81

0.92

582,931

9,885,341

548.3

227.7

228.3

2.75

0.6

582,930

9,885,341

546.7

BGH094



582990



9885055



810



270



-65



381

384.81

3.84

3.81

582,808

9,885,054

473.5

389.74

390.25

5.95

0.51

582,805

9,885,054

467.4

408.45

411

5.82

2.55

582,795

9,885,054

450.4

BGH095





582960





9884759





831





270





-60





391.57

399.6

4.56

8.03

582,773

9,884,762

482.7

400

401

1.85

1

582,770

9,884,761

478.6

405

411.97

4.47

6.97

582,766

9,884,761

471.9

414

414.3

1.36

0.3

582,763

9,884,761

467.2

BGH096

No significant intercepts

BGH097

583013

9885345

759

270

-58

242

245.5

1.10

3.5

582,879

9,885,344

555.7

247

250.1

2.66

3.1

582,876

9,885,344

551.8

BGH099

No significant intercepts

BGH100

583013

9885345

759

270

-79

226.76

231.27

2.09

4.51

582,965

9,885,347

535.2

233.08

235

1.58

1.92

582,964

9,885,347

530.3

BGH101







582990







9884975







813







270







-65







387.37

388.62

2.66

1.25

582,802

9,884,968

474.7

392.33

394.68

1.49

2.35

582,799

9,884,968

470.1

396

398.24

0.53

2.24

582,797

9,884,968

467.1

402.74

410.2

3.68

7.46

582,792

9,884,967

459.3

423.64

425.48

13.48

1.84

582,781

9,884,967

444.5

BGH102

No significant intercepts

MND001

No significant intercepts

MND002

No significant intercepts

MND003

No significant intercepts

MND004

583392

9886283

682

270

-52

524.76

525.06

0.67

0.3

582,994

9,886,250

347

MND005

No significant intercepts

MND006

No significant intercepts

MND007

583100

9886210

726

270

-75

402

402.45

0.58

0.45

582,987

9,886,211

340.5

MND009

582881

9886200

752

270

-65

96.35

96.75

2.28

0.4

582,842

9,886,200

667.3

MND010

No significant intercepts

MND011

583103

9886211

726

270

-83

419.26

428

21.85

8.74

583,021

9,886,194

312.7

430.6

438.9

17.52

8.3

583,018

9,886,193

302

MND012

582950

9886140

765

270

-60

64.7

65.35

12.2

0.65

582,916

9,886,142

699.8

MND013

582945

9886142

759

270

-50

142.7

142.98

10.05

0.28

582,852

9,886,146

651.2

177

178

1.02

1

582,829

9,886,146

625.5

MND014

No significant intercepts

MND015a

582950

9886140

755

270

-70

172.32

172.68

6.34

0.36

582,887

9,886,144

594.8

MND016

583063

9886162

741

270

-50

249.42

253

0.62

3.58

582,895

9,886,161

554.1

MND017

583200

9886170

745

270

-50

385

386

1.02

1

582,952

9,886,164

450.4

MND018

583063

9886162

741

270

-60

284.7

285

11.7

0.3

582,912

9,886,160

499.2

MND019

583200

9886170

745

270

-64

432.24

444

25.94

11.76

582,996

9,886,161

357.6

445

445.55

15.3

0.55

582,993

9,886,160

351.6

1. Apparent widths, not true thickness

Appendix 3: Checklist of Assessment and Reporting Criteria

Drilling techniques

All drillholes were diamond drill cored and drilled from surface (most intersections drilled using NQ size), holes drilled orientated in an east-west direction were angled between -60° and -70°. Holes collared in the west were drilled out in fan patterns into the side of a hill and angled between 0° and minus 35°.

Logging

All of the drillholes were geologically logged by qualified geologists. The logging is of an appropriate standard for grade estimation.

Drill sample recovery

Core recovery in the mineralised zones was observed to be very good and is on average 97%.

Sampling methods

Half core samples were collected continuously through the mineralised zones after being cut longitudinally in half using a diamond saw. Drillhole samples were taken at nominal 1 m intervals, which were adjusted to smaller intervals in order to target the cassiterite vein zones. Lithological contacts were honoured during the sampling. MSA’s observations indicated that the routine sampling was performed to a reasonable standard and is suitable for evaluation purposes.

Quality of assay data and laboratory tests

At the on-site ABM laboratory (managed by Anchem), samples were first checked off against the submission list supplied and then weighed and oven dried for 2 hours at 105 degrees Celsius. The dried samples were crushed by jaw crusher to 75% passing 2mm, from which a 250g riffle split was taken. This 250g split was pulverised in ring mills to 90% passing 75μm from which a sample for analysis was taken. Samples were homogenised using a corner-to-corner methodology and two samples were taken from each pulp, one of 10g for on-site laboratory assaying and another 150g sample for export and independent accredited 3rd party laboratory assaying.

Received samples at ALS Johannesburg are checked off against the list of samples supplied and logged in the system. Quality Control is performed by way of sieve tests every 50 samples and should a sample fail, the preceding 50 samples are ground in a ring mill pulveriser using a carbon steel ring set to 85 % passing 75μm. Samples are analysed for tin using method code ME-XRF05 conducted on a pressed pellet with 10% precision and an upper limit of 5,000ppm. The over-limit tin samples are analysed as fused disks according to method ME-XRF15c, which makes use of pre-oxidation and decomposition by fusion with 12:22 lithium borate flux containing 20% Sodium Nitrate as an oxidizing agent, with an upper detection limit of 79% Sn.

Prior to the 2021 drilling the assays were also conducted at ALS Global in Johannesburg where samples were analysed for tin using fused disc ME-XRF05 with 10% precision and an upper limit of 10 000 ppm. This was reduced to 5,000 ppm from 2014 onwards. Over limit samples were sent to Vancouver for ME-XRF10 which uses a Lithium Borate 50:50 flux with an upper detection limit of 60% and precision of 5%.

ME-ICP61, HF, HNO3, HCL04 and HCL leach with ICP-AES finish was used for 33 elements including base metals. ME-OG62, a four-acid digestion, was used on high grade samples for Pb, Zn, Cu & Ag.

External quality assurance of the laboratory assays for the Alphamin samples was monitored. Blank samples (223), certified reference materials (310) and duplicate samples (277) were inserted with the field samples accounting for approximately 11% of the total sample set.

The QAQC measures used by Alphamin revealed the following:

  • Blank samples indicated that no significant contamination occurred overall. Low levels of contamination (mostly <200 ppm Sn) mostly occurred, however 9 values between 229 ppm and 1,285 ppm were returned. Given the high grades at Bisie, the levels of contamination are not significant.

  • Five different CRMs were used with expected values between 0.18% and 31.42% Sn. The lower grade CRMs were prepared by Ore Research and Exploration (OREAS) and the two high grade CRMs (4.19% and 31.42% Sn) by the Bureau of Analysed Samples Ltd (BCS). In general, ALS returned values within the tolerance limits (three standard deviations) for the OREAS CRMs, although slightly lower than the expected value. Assays of the highest grade BCS CRM were mostly outside of the three standard deviation limits but within ±4%of the expected value. The update assays of the high grade BCS-355 CRM were within ±6% of the expected value with no overall bias relative to the CRM expected value. For the 5.07% Sn BCS CRM, assays were consistently lower than the expected value by as much as 7%. This trend continued for the update assays with an average under-assay of 7% relative to the CRM expected value. Overall, the CRMs results indicate a slight negative bias for the ALS assays.

  • Coarse duplicates show mostly excellent correlation, indicating minimal error in the process and a high degree of repeatability.

Verification of sampling and assaying

The mineralisation in thirteen of the drillholes completed in 2021 at Mpama South were visually verified during a site-visits by the QP in August 2021 and several of the initial drillholes were examined during earlier site visits to Bisie. The QP observed the mineralisation in the cores and compared it with the assay results. It was found that the assays generally agreed with the observations made on the core. Core photos from the drilling programme have regularly been provided to the QP for inspection.

105 pulp duplicates were sent to SGS (Johannesburg) in November 2021 for confirmation assaying.

  • The pulp duplicates showed acceptable correlation with the ALS assays at both high- and low-grade ranges with an overall bias of near zero.

    • Average bias for grade ranges > 1% is less than 1%.

    • Tendency for ALS to be higher (~5%) for the grade ranges less than 1%.

  • Inter-lab precision (after removal of <0.10%) is 85% within 10% error and 95% within 20% error

Location of data points

The drillhole collar positions were surveyed using a differential GPS.

Downhole surveys were completed using a multishot down-hole survey instrument (Reflex EZ-Track), or north seeking gyro (Reflex EZ-Gyro / Reflex Gyro Sprint-IQ).

Tonnage factors (in situ bulk densities)

Relative density measurements were made on the majority of recent drillhole samples using the Archimedes Principle of weight in air versus weight in water. A regression formula of tin grade against relative density was developed and applied to the samples that did not have direct measurements. The assigned specific gravity was interpolated into the block model using ordinary kriging.

Data density and distribution

A total of 107 holes were drilled in Mpama South. Holes were drilled steeply from east to west, along section lines spaced approximately 60 m to 80 m apart. Several sets of holes were drilled in a fan pattern into the side of a steep hill, with orientations spanning from the northeast to the southeast (from azimuth 045° to 125°). These drillholes fans intersect the mineralisation 25 m to 40 m apart in most of the Mineral Resource area.

Database integrity

Data was provided as Excel files. MSA completed spot checks on the database and is confident that the Alphamin database is an accurate representation of the original data collected.

Dimensions

The mineralisation consists of seven zones, with a total extent of 1 110 m along strike. The two main zones are MZ1 which has a strike length of 900 metres and 350 m down-dip and MZ2, with a strike length of 650 m and 350 m down-dip, accounting for 88% of the Mineral Resource.

The zones occurring in the footwall and hangingwall of the MZ1 and MZ2 tend to be narrower and irregular in shape with strike lengths from 100 m to 300 m. MZ6, which is located to the south has a strike length of 270 m and a dip length of 110 m.

Geological interpretation

The mineralised intersections in drill core are clearly discernible. The Mineral Resource is interpreted to occur as irregular tabular mineralised zones, dipping 65-70° to the east, containing several narrow veins and disseminations of cassiterite. The mineralised zones are hosted in chlorite schist that is the result of intense hydrothermal alteration associated with a fracture system.

The two main zones of the Mineral Resource (MZ1 and MZ2) are continuous for almost 900 m, with average thicknesses of 4.1 m and 3.4 m respectively. However, the thicknesses of these two zones vary from as little as 1 m, up to 14 m thick.

Three smaller zones (MZ3 to MZ5) occur in the footwall of the main mineralisation which progressively become narrower, moving away from the main zone. MZ3 thickness ranges from 1 m to 9 m with an average thickness of 1.5 m. MZ4 has an average thickness of 1 m, attaining a maximum thickness of 5 m. MZ5 has an average thickness of 1.2 m, ranging from 1 m to 5 m. All zones become narrower along the edges, where they pinch-out.

A small, narrow zone (MZ7) occurs in the hangingwall of the main mineralisation with an average thickness of 0.5 m and a maximum thickness of 4 m.

MZ6, which occurs to the south, tends to be lower in grade and has an average thickness of 4 m, ranging from 1 m up to 9 m.

A three-dimensional wireframe model was created for the seven zones of mineralisation based on a grade threshold of 0.40% Sn. The MZ1 and MZ2 make up the main zone, which are the most consistent zones and occur within a persistent chlorite schist. Narrower less continuous zones occur above and below the main zone within chlorite-mica schists.

Domains

The mineralisation was modelled as seven tabular zones containing irregular vein style mineralisation. A hard boundary was used to select data for estimation in order to honour the sharp nature of vein boundaries.

Compositing

Sample lengths were composited to 1 m by length and density weighting.

Statistics and variography

Statistics for the seven estimation domains show distributions that are positively skewed with coefficients of variation (CV) ranging from 1.33 to 1.97, the only exception being domain MZ7 which shows lower variability due to very few composites resulting in a CV of 0.79.

The two main zones (MZ1 and MZ2) have similar average tin grades (2.30% and 2.07% respectively). The smaller, footwall zones (MZ3 to MZ5) are higher in tin grade with averages ranging from 2.4% to 4.11% while MZ6 and MZ7 are lower in tin grade, with an average of 0.57% and 1.05% respectively.

Normal Scores semivariograms were calculated in the plane of the mineralisation, down-hole and across strike. Variograms were modelled for tin, with a range of 40 m within the plane of mineralisation and with a range of 3 m across the structures.

Top or bottom cuts for grades

Top caps were applied to outlier values, identified as breaks in the cumulative, probability plots.

Data clustering

Data clustering occurs where the fan drilling, collared on the western side of the deposit, intersect the surface drilling collared in the east, resulting in a data spacing of 25 m to 40 m towards the centre of the deposit. Outside of this area, the grid spacing becomes more regular, 60m to 80 m along strike and 50 m down-dip.

Block size

A rotated block model with a parent cell of 10 mX by 10 mY by 2 mZ was used. Sub-celling was used to divide the parent cells to a minimum sub-cell of 1 mX by 1mY by 0.2 mZ to closely fit the narrow portions of the vein structures

Grade estimation

Tin, copper, lead, zinc, silver, arsenic and density were estimated using ordinary kriging. A minimum number of 5 and a maximum of 10 one metre composites were required for the tin and density estimates. A minimum of 5 and maximum of 8 composites were used for the other elements.

Estimation was carried out in three passes, with the first pass using search volumes coinciding with the variogram ranges. A second pass estimate expanded the search volumes by a factor of 1.5 to estimate blocks where insufficient samples were present for an estimate in the first pass. Where blocks remained un-estimated from the first two passes, a third pass, using an expansion factor of 10 was used to ensure all blocks in the model received a grade and density estimate.

Dynamic Anisotropy was used to orientate the search volumes to the strike and dip of the individual mineralised zones.

Resource classification

Indicated Mineral Resources were declared where the drillhole spacing is approximately 40 m and where the geological model has low variability. The remainder of the interpreted model was classified as Inferred Mineral Resources, corresponding to areas informed by drilling spaced 50 m to 80 m apart with a maximum extrapolation of 20 m from the nearest drillhole.

Mining cuts and cut-off grade assumptions.

A minimum of 1 m was applied to the mineralisation model. The thickness, grade and steep dip implies that the Mineral Resource can be extracted using established underground mining methods similar to those applied at Mpama North.

A 1% cut-off grade was applied based on the Mpama North costs and prevailing tin price.

Isolated blocks above cut-off grade in dominantly low-grade areas of the model were not included in the Mineral Resource

Metallurgical factors or assumptions

The tin mineralisation occurs as cassiterite, an oxide of tin (SnO2). At Mpama North gravity separation is used to produce a tin concentrate. The Cu, Zn and Pb mineralisation occurs as sulphides, which are removed by flotation to create the cassiterite product. It is assumed that similar processes will be used to process the Mpama South mineralisation.

Legal aspects and tenure

Alphamin through its wholly owned DRC subsidiary, Alphamin Mining Bisie SA, has a Mining License PE 13155 which includes the Bisie Tin Mine. Alphamin has an 84.14 percent interest in ABM. The Government of the Democratic Republic of Congo (GDRC) has a non-dilutive, 5% share in ABM.

Audits, reviews and site inspection

The following review work was completed by MSA:

  • Inspection of approximately 20% of mineralised core intersections used in the Maiden Mineral Resource estimate.

  • Database checks.

  • Inspection of Mpama South drill sites in August 2021.

  • On-site review of the exploration processes.

  • Laboratory inspections.



1 Data obtained from International Tin Association Tin Industry Review 2020.
2 This is a non-GAAP financial measure, is not standardized and may not be comparable to similar financial measures of other issuers. See “Use of Non-IFRS Financial Performance Measures” below for a further explanation of this performance metric and how it is calculated.
3 Data obtained from Preliminary Economic Assessment study announced on 7 March 2022.
4 CIM Definition: An Indicated Mineral Resource is that part of a Mineral Resource for which quantity, grade or quality, densities, shape and physical characteristics are estimated with sufficient confidence to allow the application of Modifying Factors insufficient detail to support mine planning and evaluation of the economic viability of the deposit.
5 CIM Definition: An Inferred Mineral Resource is that part of a Mineral Resource for which quantity and grade or quality are estimated on the basis of limited geological evidence and sampling. Geological evidence is sufficient to imply but not verify geological and grade or quality continuity.