Advertisement
Canada markets closed
  • S&P/TSX

    22,167.03
    +59.95 (+0.27%)
     
  • S&P 500

    5,254.35
    +5.86 (+0.11%)
     
  • DOW

    39,807.37
    +47.29 (+0.12%)
     
  • CAD/USD

    0.7385
    -0.0001 (-0.02%)
     
  • CRUDE OIL

    83.11
    -0.06 (-0.07%)
     
  • Bitcoin CAD

    95,394.41
    -703.93 (-0.73%)
     
  • CMC Crypto 200

    885.54
    0.00 (0.00%)
     
  • GOLD FUTURES

    2,254.80
    +16.40 (+0.73%)
     
  • RUSSELL 2000

    2,124.55
    +10.20 (+0.48%)
     
  • 10-Yr Bond

    4.2060
    +0.0100 (+0.24%)
     
  • NASDAQ

    16,379.46
    -20.06 (-0.12%)
     
  • VOLATILITY

    13.01
    0.00 (0.00%)
     
  • FTSE

    7,952.62
    +20.64 (+0.26%)
     
  • NIKKEI 225

    40,369.44
    +201.37 (+0.50%)
     
  • CAD/EUR

    0.6836
    -0.0007 (-0.10%)
     

As 4G demand balloons, here come the “super” base stations

Mobile World Congress kicks off in a little more than a week, and while most of the tech world might be anticipating the Barcelona show for the launch of Samsung Galaxy S6, MWC is actually the place where the newest network gear makes its debut. This year network equipment makers seem particularly focused on building bigger, badder base stations — the processing workhorses of any cellular network — as demand for more LTE speed and capacity hits new highs around the world.

Ahead of MWC, Ericsson announced its newest base station, simply called the Radio System, which can support 24 individual cells, 80,000 simultaneous 4G connections and 960 MHz of total bandwidth on a single baseband unit. What does that mean exactly? Well, lets take one of Ericsson’s customers Verizon as a hypothetical example.

Verizon is launching LTE all over the spectral map. Its main LTE network uses 20 MHz of spectrum in the 700 MHz band. Its new XLTE network uses 40 MHz of spectrum in the 1.7/2.1 GHz band, and it’s launching supplemental LTE capacity in the 1900 MHz PCS band in places like San Francisco and New York. Furthermore, Verizon is reusing the same spectrum at its cell sites by splitting them into three or more sectors, each of which have the capacity a full-fledged 4G cell. And by virtue of LTE’s dual antenna, or MIMO, capabilities, it’s sending two data streams to every 4G device. If Verizon were to deploy the Radio System, it could host that entire multi-faceted network on a single base station and still only use up a little more than half of its overall capacity.

Alcatel-Lucent is also showing off a new souped-up base station at MWC, and though it has a more arcane name (the 9926 eNodeB) than the Radio System and it doesn’t have quite the horsepower or Ericsson’s big unit. Alcatel-Lucent’s base station can also support up 24 individual cells or sectors, but only 16,000 simultaneous users. The baseband processor is designed to support some crazy upgrades to future LTE networks such as eight-antenna MIMO schemes and other LTE-Advanced technologies.

ADVERTISEMENT

This might seem like overkill to you or I, but it’s an important trend because operators globally are starting to add more and more capacity to their 4G networks at an increasingly faster pace. All four of the nationwide carriers have already started cannibalizing their 2G and 3G networks to get at more 4G airwaves. Verizon and AT&T just bid big in the last federal spectrum auction. And next year’s 600 MHz spectrum incentive auction will likely get even more attention from mobile carriers.

To keep up with all of that new spectrum, carriers need base stations that they can grow into, otherwise they’ll be forced to start from square one every few years by building new networks. Despite its new monster-sized baseband, Ericsson is anticipating carriers will still need to double or triple up on base stations at every cell site. So it has redesigned its network housing, creating what is essentially a track lighting system for mobile gear. Carriers mount rails on their towers and every time the need to add a new piece of gear, they just stick it on the tracks.

Ericsson’s new radio-on-rails architecture

But the mobile industry has started to question whether this constant cycle of cell site upgrades is really the best way to build a network. Instead mobile infrastructure vendors have started looking to the data center as a model for future network design. Instead of building a huge amount of processing power into every cell site, they can put all of that baseband capacity in the cloud and divvy it out to cells as demand dictates. The concept is called Cloud-RAN (RAN standing for Radio Access Network) and carriers like China Mobile, SK Telecom and Telefónica are already testing it out with the help of Intel and many of many telecom equipment makers.

Nokia Networks plans to talk up a new centralized network architecture at MWC called Radio Cloud, which takes many of cues from the IT world. It uses Ethernet to connect cells to an IP network, it runs its baseband functions on off-the-shelf servers and Xeon processors, and it adopts open-source software to manage the whole shebang, Nokia said. Cloud-RAN is still a year or more away from arriving in a commercial network, but we’re going to hear at lot more about it at MWC.

Image copyright Shutterstock / alphaspirit.

Related research and analysis from Gigaom Research:
Subscriber content. Sign up for a free trial.



More From paidContent.org