Advertisement
Canada markets closed
  • S&P/TSX

    22,308.93
    -66.90 (-0.30%)
     
  • S&P 500

    5,222.68
    +8.60 (+0.16%)
     
  • DOW

    39,512.84
    +125.08 (+0.32%)
     
  • CAD/USD

    0.7317
    +0.0006 (+0.08%)
     
  • CRUDE OIL

    78.20
    -1.06 (-1.34%)
     
  • Bitcoin CAD

    83,311.95
    -2,793.48 (-3.24%)
     
  • CMC Crypto 200

    1,261.13
    -96.88 (-7.13%)
     
  • GOLD FUTURES

    2,366.90
    +26.60 (+1.14%)
     
  • RUSSELL 2000

    2,059.78
    -13.85 (-0.67%)
     
  • 10-Yr Bond

    4.5040
    +0.0550 (+1.24%)
     
  • NASDAQ

    16,340.87
    -5.40 (-0.03%)
     
  • VOLATILITY

    12.55
    -0.14 (-1.10%)
     
  • FTSE

    8,433.76
    +52.41 (+0.63%)
     
  • NIKKEI 225

    38,229.11
    +155.13 (+0.41%)
     
  • CAD/EUR

    0.6789
    +0.0011 (+0.16%)
     

Infrared digital holography device could aid fire fighters

Washington, February 27 (ANI): Italian researchers say a new cutting-edge imaging technique will allow fire-fighters see through flames, and thus locate and rescue people trapped at the spot, say scientists.

Called infrared digital (IR) holography, the device addresses the biggest challenge that fire-fighters face - seeing through thick columns of smoke and walls of flame to find people who need immediate rescue.

Firefighters can see through smoke using current IR camera technology. However, such instruments are blinded by the intense infrared radiation emitted by flames, which overwhelm the sensitive detectors and limit their use in the field. By employing a specialized lens-free technique, the researchers have created a system that is able to cope with the flood of radiation from an environment filled with flames as well as smoke.

"IR cameras cannot 'see' objects or humans behind flames because of the need for a zoom lens that concentrates the rays on the sensor to form the image," says Pietro Ferraro of the Consiglio Nazionale delle Ricerche (CNR) Istituto Nazionale di Ottica in Italy. By eliminating the need for the zoom lens, the new technique avoids this drawback.

ADVERTISEMENT

"Besides life-saving applications in fire and rescue, the potential to record dynamic scenes of a human body could have a variety of other biomedical uses including studying or monitoring breathing, cardiac beat detection and analysis, or measurement of body deformation due to various stresses during exercise," Ferraro says.

The study was recently published in the Optical Society's (OSA) open-access journal Optics Express. (ANI)